

Unit Heaters

Armstrong[®] Longer Life in the Harshest Environments

When it comes to long life under tough industrial conditions, Armstrong is all you need to know about unit heaters. Even in the most severe environments, where coil leaks and corrosion are costly problems, Armstrong coils maintain high efficiency and output.

Armstrong: Why and How

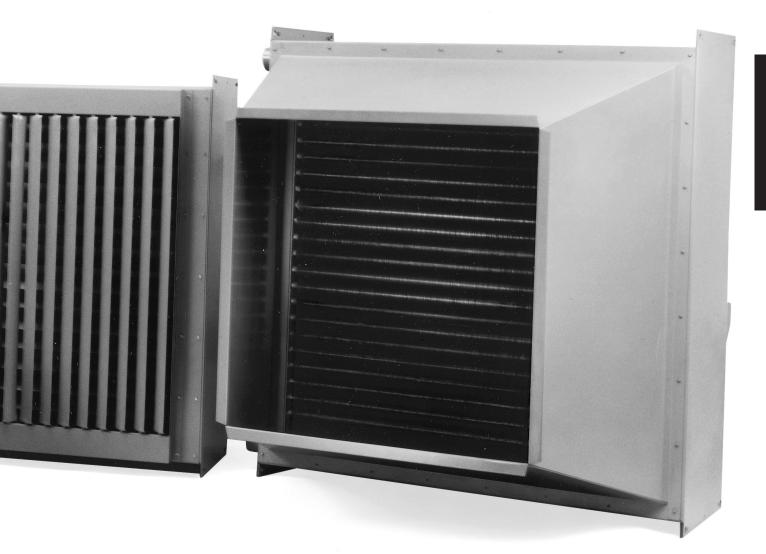
The ability to maintain heat transfer efficiency and resist corrosion—both internally and externally—is why Armstrong unit heaters are uniquely dependable. *How* we construct them is your assurance of lasting performance, even in severe operating environments.

Consider these measurable benefits at work in your facility:

- Heavy gauge enclosures: Fabricated from 14-gauge steel for protection and durability.
- **Corrosion-resistant heating cores:** Cores are fabricated in a full range of materials, including steel, stainless steel, copper and others. Special coatings may be applied to increase resistance to external corrosion. Cores feature allwelded construction for durability and ease of repair. Cores can be steam or liquid compatible and can be used for steam, hot water or glycol heating mediums.

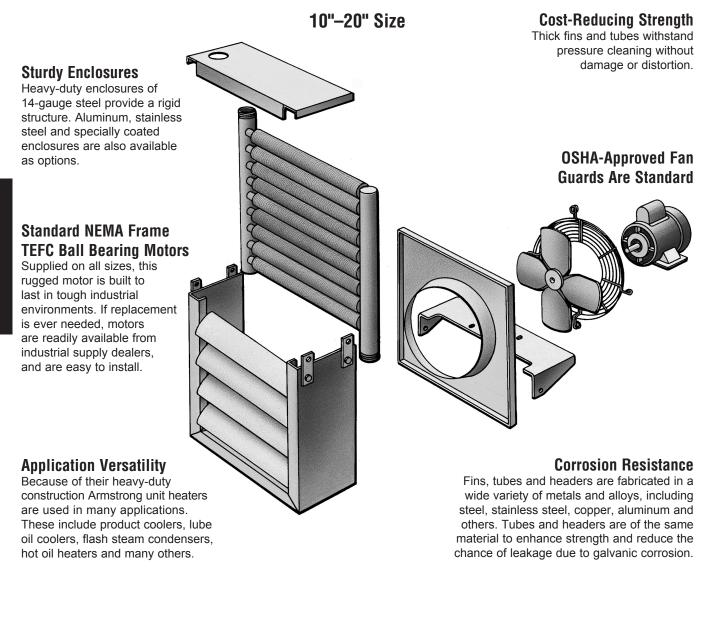
- Standard NEMA frame TEFC ball bearing motors: Supplied on all sizes, these heavy-duty motors are totally enclosed to lock out dirt for smooth performance. Quick access to the motor permits easy replacement.
- Thick fins and tubes: Constructed of high-strength, corrosion-resistant materials. Fins are available in a wide variety of thicknesses and pitches to withstand high pressure cleaning without damage or distortion.
- **Customizing to your needs:** Fans range in size from 10" to 48", and the wide selection of component materials means long, trouble-free service life.

Lightweight coils don't stand a chance in harsh environments. Armstrong coils survive because they're built as tough as your meanest application.

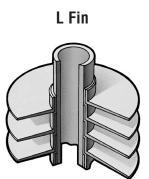


Your Steam Specialist

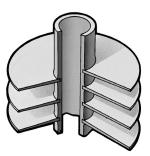
The first step toward ensuring trouble-free operation is proper unit selection. Your Armstrong Representative will help you select the right unit heater or door heater for any given application.

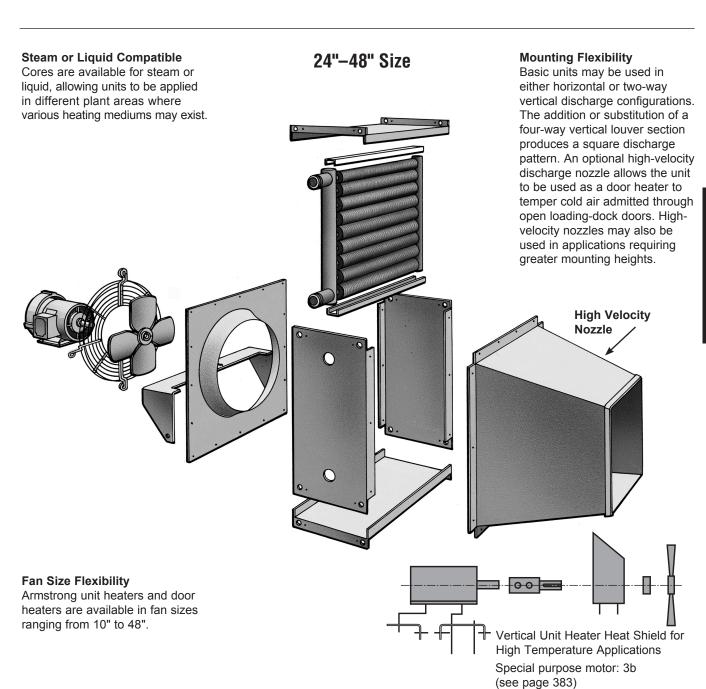

Our expertise as a manufacturer of unit heaters and door heaters is backed by over 70 years' experience in steam trapping, venting and condensate removal. To you, that means a superior product and an Armstrong Representative who understands how to make it work in your steam system.

If you're losing heat transfer due to deteriorating coils, contact your Armstrong Representative for a complete application analysis. You'll receive top-quality, reliable products from experts who know how to maximize your steam system efficiency.


Armstrong[®] Compare the Benefits You Can't See

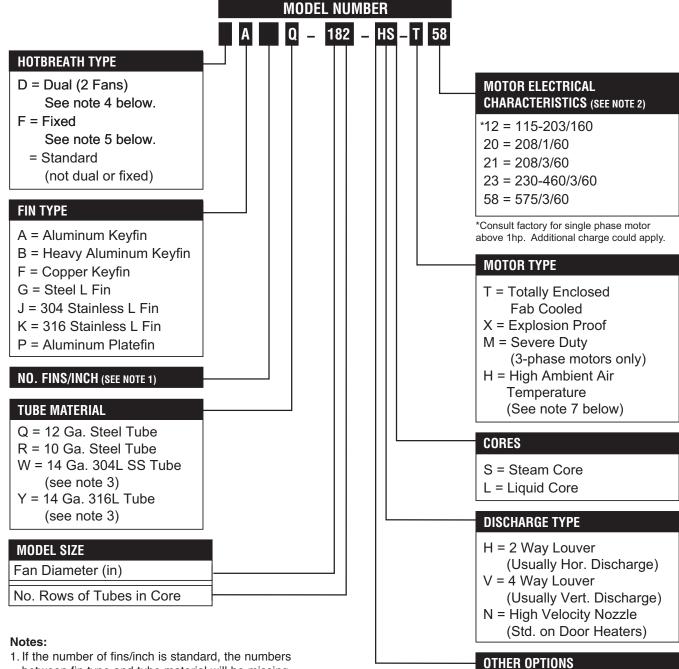
Many of the best reasons to insist on Armstrong unit heaters and door heaters are ones you never even see. Components like motors, bearings, tubes, enclosures and fins are built heavy-duty to ensure lasting performance. Armstrong's options for fin material, pitch, height and type, for example, help explain why our heating cores last longer and perform with greater efficiency. These factors all have a bearing on heat transfer. Knowing how to balance these and other factors is the key to a cost-effective solution. That knowledge is perhaps the most important of Armstrong's many hidden benefits.




The L fin has a foot at its base and is tension wound on knurled tube material. The L-shaped base provides a large contact area between the tube and the fin, ensuring effective, long-lasting heat transfer. The L fin is recommended when tubes and fins are of the same material.

The keyfin is manufactured by forming a helical groove in the tube surface, winding the fin into the groove and peening the displaced metal from the groove against the fin. This means a tight fit between the fin and the tube. The keyfin is the superior design for dissimilar tube and fin material.

Keyfin



Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

Heating and Cooling Coils

- between fin type and tube material will be missing.
- 2. If dual or triple voltage motors are supplied, the voltage shown on the model number will be the lowest specified. It is the responsibility of the installer to ensure that the motor is wired correctly in accordance with the motor manufacturer's instructions to preclude damage.
- 3. May be substituted with Sch. 10 SS pipe.
- 4. Add prefix 'D' for dual units (2 fans on wider core). For standard unit with one fan, the Hotbreath type will be missing.
- 5. F Models includes larger motors, cleanout lip, ports for sensors.

HS = Heat Shield

(See note 6 below)

- 6. Required for vertical airflow or if heating medium temperature is above 300°F.
- 7. Required for ambient air above 104°F and only available with 3-phases motors.

Material Specifications

Unit Heater (Core Material Sp	ecifications							
1" 01) Tubes		Fins			Hea	ders	Conne	ections
Material	Min. Wall Thickness	Material	Туре	FPI	Minimum Thickness	Material	Minimum Thickness	Material	Minimum Thickness
Standard Ma	terials							-	<u> </u>
Steel	.109"	Steel	L-Foot	11	.024"	Steel	.145"	Steel	.133"
Steel	.109"	Aluminum	Keyfin	11	.020"	Steel	.145"	Steel	.133"
Steel	.109"	Aluminum	Keyfin	13	.016"	Steel	.145"	Steel	.133"
Special Orde	r Materials								<u> </u>
Steel	.109"	Copper	Keyfin	12	.016"	Steel	.145"	Steel	.133"
Stainless	.083"	Steel	L-Foot	11	.024"	Stainless	.109"	Stainless	.109"
Stainless	.083"	Stainless	L-Foot	10	.020"	Stainless	.109"	Stainless	.109"
Stainless	.083"	Aluminum	Keyfin	11	.020"	Stainless	.109"	Stainless	.109"
Stainless	.083"	Copper	Keyfin	11	.016"	Stainless	.109"	Stainless	.109"

NOTE: Stainless tubes available in either 304L or 316L.

Options:

Thicker tube walls.

Design Pressures and Testing Specifications

Core design pressure is 350 psig @ saturated steam temperature. (650°F for carbon steel and 500°F for stainless steel) Standard testing pressure at 525 psig. Higher pressure ratings are available upon request.

Enclosures

Enclosures, louvers and high-velocity nozzles are fabricated from 14 ga galvanized steel, finished in gray enamel. Available material options include stainless steel or aluminum. Epoxy coatings and other protective finishes are available.

Motor Specifications

Standard Motors

Construction:

TEFC, NEMA frame, rigid mount, continuous duty, NEMA B design, Class B insulation, 1.0 service factor, sealed ball bearings and steel frame.

Electrical Characteristics:

Single Phase (standard through 3/4 HP—optional extra cost 1-1/2 HP) 115, 208 & 230 volts. Three Phase (all sizes)—208, 230, 460 & 575 volts.

Special Purpose Motors

- 1. Explosion-proof motors are available in all horsepowers and voltages. They are suitable for Class I Group D and Class II Groups F & G service.
- Environmentally Protected. Known as "Mill & Chemical," "Severe" and "Hostile" duty motors.
 - a. Three phase 1/2 & 3/4 HP. Available with 1.15 service factor, Class F insulation, steel frame, cast iron end bells and conduit box, phosphatized or stainless steel shaft, shaft flingers and stainless steel nameplate.

Fans

Fans are of stamped aluminum with steel hubs and spiders on unit sizes 30" and smaller. Cast aluminum fans are furnished on unit sizes 36" and larger.

Fan guards are OSHA-approved and constructed of bright zinc plated steel wire.

b. Three phase integral HP. Available with 1.15 service factor, Class F insulation, cast iron frame, end bells, fan cover and conduit box, stainless steel shaft, shaft flingers and stainless steel nameplate, epoxy coated. (Explosion proof motor S.F. = 1.0).

3. High Temperature Applications

- a. For horizontal discharge applications where high ambient temperatures are encountered (typically 140°F–150°F, 165°F maximum), motor HP or insulation class must be increased. Consult factory.
- b. For vertical units with on/off fan operation:

Heating Medium Temperature 300°F–375°F Class F Insulation & Heat Shield

For explosion proof motor, consult factory. 375°F & Over Class H Insulation & Heat Shield

4. Washdown duty motors also available.

Special coatings such as powder coat epoxy, baked phenolic or hot dip galvanizing.

Armstrong[®] Selecting Unit Heaters

A multi-step process is required to select the proper size, type and number of unit heaters to adequately heat a particular building. The process consists of the following steps:

- 1. Estimate the building heat loss.
- 2. Preliminarily select the number and type(s) of heaters to properly cover the area to be heated.
- 3. Select specific models and calculate the actual performance of equipment selected using actual heating medium conditions and inlet air temperatures.
- 4. Calculate actual throws, spreads and mounting heights and check to see that they will allow for complete coverage of the area to be heated.
- 5. If necessary, adjust selection and repeat steps 2 through 4.

Estimating Heat Loss

The ASHRAE Handbook of Fundamentals should be consulted to determine heat losses, taking into account specific building features. However, for an approximation of the heat loss from a typical modern industrial building, the following formula may be used.

With heated area size and outside design temperatures given:

A. Calculate the volume of the building in cubic feet:

Volume (cu ft) = floor length (ft) x floor width (ft) x average ceiling height (ft)

Typical Arrangements

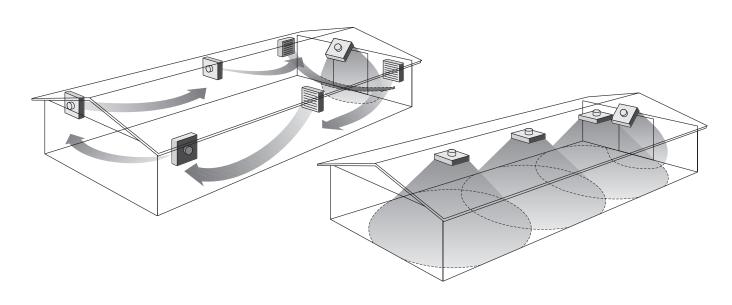
B. Calculate the area of walls and roofs that are exposed to outside temperature:

Exposed area (EA) = wall length (ft) x average ceiling height (ft) + floor area (sq ft)

C. Total heat load (MBH) =

$$\left(\frac{V}{25} + \frac{EA}{4}\right) \times \frac{\Delta T}{1000}$$

Where


- V = Building Volume (cu-ft)
- EA = Exposed Wall & Roof Area (ft²)

 ΔT = Inside Design Temperature (F) – Outside Design Temperature (F)

Selection of Number, Type(s) and Location of Unit Heaters

With the total heat loss calculated, the next step is to determine the number, type(s) and location of unit heaters. First, look at the layout of the building. From that, determine the general arrangement of the unit heaters. Some typical layouts are shown below, but any given arrangement should be tailored to the particular building. Some general rules to consider follow:

 Horizontal unit heaters are used as a means to heat outside walls and should be directed to discharge toward or along walls to provide a wiping effect. Horizontal discharge units are generally sufficient to adequately heat most buildings except those with very large central floor areas or very high ceilings.

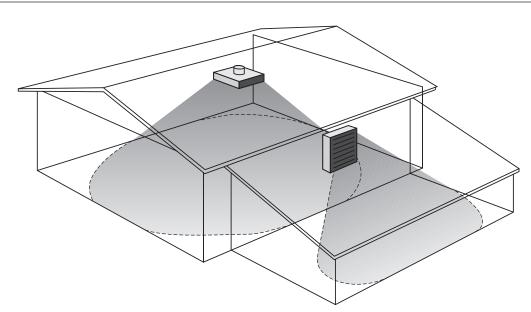
Horizontal unit heaters provide a sweeping effect over outside walls and are sufficient to heat most buildings except those with large central floor areas.

Four-way vertical discharge units are used to heat large central areas and buildings with high ceilings or buildings with large heat loss through the ceiling.

2. Vertical unit heaters are used when a direct downward discharge to heat large central areas is needed. They may also be used if the mounting heights and throws allow for wiping of the walls with their discharge air. The discharge may be arranged for two-way airflow or fourway airflow with the addition or substitution of a four-way discharge section. A rectangular building might only need two-way discharge, whereas a square building would be better covered with a four-way arrangement.

Vertical units are also used in buildings with high ceilings or where roof heat losses are exceptionally high. Hot air from the roof area is drawn into the units and directed down to floor level, minimizing temperature gradients and reducing fuel consumption.

If fitted with a high-velocity discharge nozzle, units can be used at higher than normal mounting heights.


- 3. Door heaters simply use a high-velocity discharge nozzle to increase the air velocity to reach those areas that are hard to heat. These heaters can provide blankets of warm air to heat large open-loading doorways or busy entryways. They are also ideal for heating wide open plant areas. If door heater fans are activated only when doors are open, their Btu output should not be considered as part of the heat loss makeup. See page 386 for door heater selection guidelines.
- 4. Units should be directed toward the areas of greatest heat loss. Outside doorways and exposed windows require more careful consideration.
- 5. Unit heater airstreams should be minimally obstructed to allow for greatest heat distribution.

- 6. Unit heaters should be located to blow into open spaces such as aisles and along exterior walls rather than directly at personnel.
- 7. The mounting heights and throws specified on page 392 and corrected for outlet air temperature should be followed. Improper mounting height distance will result in poor heat distribution and reduced comfort.

Once the general layout has been determined, you can begin selecting the type of model required. First, select any door heaters that may be required. Then, select any vertical unit heaters. If the vertical unit heaters are to be directed toward center floor areas and used in conjunction with horizontal units, calculate the percentage of the total area it is intended to cover and divide that by 2. That will give you the percentage of the total heat that is required from the vertical units.

Lastly, select the horizontal units. The remaining heat load to be provided is divided by the number of units desired. Here your choice may be between a number of smaller units or fewer larger units. Notice that as the units increase in size and heating capacity their throw also increases. Generally, fewer larger units will result in the most economical installation as long as full coverage is provided.

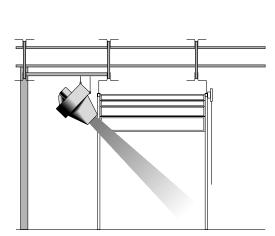
After completing this preliminary selection process, you can calculate the actual throws, spreads and mounting heights to ensure the area will be adequately heated. If you find that the required coverage cannot be met with your initial selections, recalculate coverage by adjusting unit size or number of units.

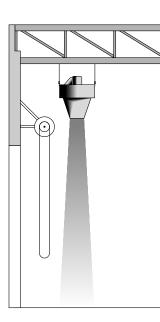
High-velocity vertical unit heaters and door heaters are used to reach hard-to-heat areas or to provide blankets of warm air to large open areas such as loading dock doors.

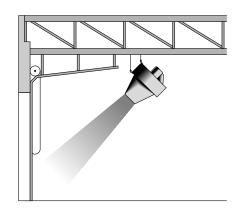
Door heaters are identical in design to unit heaters with the addition of a high-velocity nozzle. This nozzle helps direct airflow precisely to heat the door area required.

Door Heater Model Size	loor Heater Model Size Selection Chart													
Door Size				Outside Desig	n Temperature									
Width x Height (ft)	-40°F	-30°F	-20°F	-10°F	0°F	10°F	20°F	30°F						
6 x 8	30	24	24	20	18	18	16	14						
8 x 8	36	30	30	24	20	20	18	16						
8 x 10	42	36	30	30	24	20	20	18						
10 x 12	48	48	42	36	30	30	24	20						
12 x 14	Two 42	Two 36	48	42	36	36	30	30						
14 x 16	Two 48	Two 42	Two 36	48	42	42	36	30						
16 x 18	Two 48	Two 48	Two 42	Two 36	48	48	42	36						
18 x 20	Three 48	Three 42	Two 48	Two 42	Two 42	48	48	42						
20 x 22	Three 48	Three 48	Three 42	Two 48	Two 42	Two 36	48	48						
22 x 24	Four 48	Four 48	Three 48	Three 42	Two 48	Two 42	Two 36	48						
24 x 26	Four 48	Four 48	Three 48	Three 48	Two 48	Two 42	Two 42	Two 36						

How to Use This Model Size Chart:


This chart gives the recommended size of door heaters. Select either a single- or double-row heating core from the appropriate performance chart (pages 386 to 392) to give a final air temperature within the 100°F to 130°F range.


• For roll-up or sliding doors, mount unit(s) to discharge vertically with the bottom of the discharge directly above the top of the door. For overhead doors, mount unit(s)


back into the building at a distance to give sufficient clearance from the door in the open position. Aim the discharge toward the bottom of the door.

- · For doors facing prevailing winds, select one size larger.
- If negative pressure exists in the building, consult factory. Additional capacity could be required.

Typical Door Heater Arrangements

Side-mounted 45° discharge for low ceiling applications.

Vertical discharge for roll-up or sliding doors. Front-mou

Front-mounted 45° discharge for overhead doors.

FEITUIT			-			r Temperatu		Steel	Tube / Stee	el Fin			
	Medel	-	ommon D		Steel 1	Tube / Alumi 11 FPI	num Fin		ss Tube / Si		Stainle	ess Tube / Stain 10 FPI	nless Fin
	Model Size	MO	tor	CFM			_		11 FPI			1 1	
	0.20	HP	RPM	2	MBH ③	Leaving Air (°F)	Cond. (Ib/hr)	MBH 3	Leaving Air (°F)	Cond. (Ib/hr)	MBH 3	Leaving Air (°F)	Cond. (Ib/hr)
s	101	1/3	1,725	810	36	102	38	29	93	30	17	80	18
del	121	1/3	1,725	1,350	53	97	55	42	89	44	25	77	26
Standard Models	141	1/3	1,725	2,590	80	89	83	64	83	66	37	73	39
lard	161	1/2	1,725	3,330	102	88	105	87	84	90	51	74	53
lanc	181	3/4	1,725	4,420	128	87	133	109	83	113	64	73	66
ŝ	201	3/4	1,725	5,430	156	87	161	131	82	136	77	73	79
	241	1-1/2	1,125	7,020	205	87	212	179	84	185	105	74	108
	301	2	1,125	10,660	322	88	333	276	84	286	162	74	168
	361	2	1,125	13,440	406	88	420	351	84	363	206	74	213
	421	3	870	16,530	536	90	555	444	85	459	261	75	270
	481	3	870	22,110	692	89	716	593	85	614	349	75	361
S	102	1/3	1,725	700	55	133	57	45	119	47	28	98	29
lode	122	1/3	1,725	1,320	88	122	91	71	110	74	44	91	45
ē	142	1/3	1,725	1,980	122	117	126	100	107	103	61	88	63
atur	162	1/2	1,725	2,910	166	113	171	143	106	148	87	88	90
per	182	3/4	1,725	3,900	212	110	219	182	103	189	110	86	114
lem	202	3/4	1,725	4,560	253	111	262	217	104	224	131	87	136
Outlet Air Temperature Models	242	1-1/2	1,125	6,000	343	113	355	304	107	315	186	89	192
let /	302	2	1,125	9,400	548	114	567	477	107	494	291	89	301
Out	362	2	1,125	12,160	722	115	747	622	107	643	380	89	393
High (422	3	870	15,160	950	118	983	802	109	830	492	90	509
Ŧ	482	3	870	20,040	1,234	117	1,277	1,063	109	1,100	652	90	675

NOTES:

 \bigodot Steam pressure as supplied to unit heater. Valve and line losses must be subtracted from steam main pressure.

(2) Standard CFM measured at 70°F with density of .075 lb/cu ft.

③ Heat load in thousands of Btu/hr.

NOTE:

Leaving air temperature and MBH from table above must be corrected for steam pressures other than 2 psig and entering air temperatures other than 60°F.

Correction Factors Based on 2 psig $^{m O}$ Steam, 60°F Entering Air Steam ① Saturated Steam Temperature of Entering Air (°F) Pressure Steam Temp. Latent Heat -10 0 10 20 30 40 50 60 70 80 90 100 (°F) (Btu/lb) (psig) 0.71 1.16 1.08 1.00 0.93 0.85 0.78 219 966 2 5 1.64 1.55 1.46 1.37 1.29 1.21 1.13 1.05 0.97 0.90 0.83 0.76 227 960 10 0.98 239 953 1.55 1.38 1.29 1.21 1.06 0.91 0.84 1.73 1.64 1.46 1.13 15 1.80 1.71 1.61 1.53 1.44 1.34 1.28 1.19 1.12 1.04 0.97 0.90 250 945 259 939 20 1.86 1.77 1.68 1.58 1.50 1.42 1.33 1.25 1.17 1.10 1.02 0.95 274 929 30 1.68 1.60 1.51 1.43 1.35 1.97 1.87 1.78 1.27 1.19 1.12 1.04 40 1.68 1.51 1.43 1.35 286 920 2.06 1.96 1.86 1.77 1.60 1.27 1.19 1.12 50 2.13 2.04 1.94 1.85 1.76 1.67 1.58 1.50 1.42 1.34 1.26 1.19 298 912 60 2.20 2.09 2.00 1.90 1.81 1.73 1.64 1.56 1.47 1.39 1.31 1.24 307 906 70 2.26 2.16 2.06 1.96 1.87 1.78 1.70 1.61 1.53 1.45 1.29 316 898 1.37 75 2.28 2.18 2.09 1.99 1.90 1.81 1.72 1.64 1.55 1.47 1.40 1.32 320 895 80 2.31 2.21 2.11 2.02 1.93 1.84 1.75 1.66 1.58 1.50 1.42 1.34 324 891 90 2.36 2.26 2.16 2.06 1.97 1.88 1.79 1.71 1.62 1.54 1.46 1.38 331 886 100 2.41 2.31 2.20 2.11 2.02 1.93 1.84 1.75 1.66 1.58 1.50 1.42 338 880 125 2.51 2.41 2.31 2.21 2.11 2.02 1.93 1.68 353 1.84 1.76 1.59 1.51 868 150 2.60 2.50 2.40 2.30 2.20 2.11 2.02 1.93 1.84 1.76 1.67 1.59 366 857 200 2.75 2.55 2.45 2.35 2.25 2.16 2.07 1.98 1.89 1.81 388 837 2.65 1.72 2.57 250 2.87 2.77 2.67 2.46 2.36 2.27 2.18 2.09 2.01 1.92 1.81 408 820

shown

Table below lists the correction factors. To determine correction factors falling between those shown, use the next lowest steam pressure and the next highest air temperature

MBH (corrected) = MBH (above) x Correction Factor LAT (corrected) = EAT + (MBH [corrected] x 926/CFM)

Condensate Load = MBH (corrected) x 1,000/Latent Heat of Steam

Per	forma	nce Da	ata Wi	th 200°	F $^{ ext{0}}$ Wat	er, 60°	°F Enterin	ng Air Ter	nperature										
		Co	mmon	Data		Steel	Tube / Alu	minum Fir	1			el Tube / S ess Tube				Stainles	s Tube / S	tainless F	in
	Model	M	otor				11 FP	I			ətannı	11 FP					10 FP	I	
	Size	HP	RPM	CFM ②	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)
	102	1/3	1,725	700	10 20	45 39	119 112	8.9 3.9	2.01 .39	10 20	33 29	104 99	6.7 2.9	1.02 .20	10 20	25 22	93 89	5.0 2.2	.54 .10
	102	1/0		100	30	34	106	2.3	.13	30	25	93	1.7	.07	30	19	86	1.3	.04
	122	1/3		1.320	10 20	62 55	103 99	12.4 5.5	4.01 .79	10 20	52 46	96 92	10.4 4.6	1.87 .37	10 20	38 34	87 84	7.6 3.4	.95 .19
	122	1/5		1,320	30	49	94	3.2	.27	30	40	88	2.7	.13	30	30	81	2.0	.07
	140	1/0		1 000	10	90	102	18.0	1.95	10	76	96	15.2	.94	10	55	86	11.0	.46
	142	1/3		1,980	20 30	78 67	97 92	7.8 4.5	.37 .12	20 30	66 57	91 87	6.6 3.8	.18 .06	20 30	48 42	82 79	4.8 2.8	.09 .03
					10	119	98	23.9	2.77	10	97	91	19.3	1.24	10	70	82	14.0	.62
Standard Models	162	1/2		2,910	20 30	105 92	94 89	10.5 6.1	.54 .18	20 30	85 75	87 84	8.5 5.0	.24 .08	20 30	61 54	80 77	6.1 3.6	.12 .04
M No					10	156	97	31.2	3.89	10	132	91	26.5	1.77	10	94	82	18.9	.85
Idari	182	3/4		3,900	20 30	137	93 89	13.7	.75 .26	20 30	116	88	11.6	.34 .12	20 30	83	80	8.3 4.9	.17
Star					10	121 190	99	8.1 38.0	4.88	10	102 161	84 93	6.8 32.2	2.25	10	74	78 83	23.1	.06 1.08
	202	3/4		4,560	20	170	95	17.0	.97	20	144	89	14.4	.45	20	103	81	10.3	.22
			1,125		30 10	150 284	91 104	10.0 56.8	.34 8.39	30 10	127 237	86 97	8.4 47.4	.15 3.87	30 10	91 169	79 86	6.1 33.7	.08 1.82
	242	1-1/2	1,120	6,000	20	258	100	25.8	1.73	20	214	93	21.4	.79	20	153	84	15.3	.37
					30 15	232 437	96 103	15.5 58.2	.62 4.10	<u>30</u> 10	196 380	90 97	13.1 75.9	.29 6.36	30 10	137 267	81 86	9.2 53.4	.13 2.94
	302	2		9,400	20	437	103	41.6	2.79	20	345	97	34.5	1.31	20	207	84	24.5	.62
					30	381	98	25.4	1.04	30	315	91	21.0	.49	30	222	82	14.8	.23
	362	2		12,160	15 20	575 552	104 102	76.7 55.2	5.84 4.19	10 20	491 452	97 95	98.2 45.3	9.20 1.96	10 20	352 324	87 85	70.4 32.4	4.41 .94
	002	_	V	12,100	30	506	99	33.7	1.56	30	419	92	27.9	.74	30	297	83	19.8	.35
	422	3	870	15,160	10 20	748 675	106 101	149.7 67.5	3.05 .62	10 20	612 552	97 94	122.5 55.2	1.43 .29	10 20	452 406	88 85	90.4 40.6	.70 .14
	422	3		15,100	30	603	97	40.2	.02	30	490	94	32.6	.29	30	364	82	40.0	.14 .05
	100			00.040	10	989	106	197.8	4.36	10	820	98	164.1	1.97	10	547	88	119.5	.98
	482	3	♥	20,040	20 30	892 801	101 97	89.2 53.4	.89 .32	20 30	745 667	94 91	74.5 44.4	.41 .14	20 30	539 487	85 83	53.9 32.5	.20 .07
			1,725		10	28	92	5.6	3.80	10	21	84	4.2	2.09	10	16	78	3.1	.86
	101	1/3		810	20 30	25 22	88 85	2.5 1.5	.74 .26	20 30	19 17	82 79	1.9 1.1	.43 .15	20 30	14 12	76 74	1.4 .8	.17 .06
					10	41	88	8.2	6.20	10	32	82	6.3	3.54	10	23	76	4.6	1.4
	121	1/3		1,350	20	36	85	3.7	1.24	20	29	80	2.9	.73	20	20	74	2.0	.28
					30 10	32 60	82 81	2.2 12.0	.44 3.13	30 10	25 47	77	1.7 9.5	.25 1.85	30 10	18 33	73 72	1.2 6.6	.10 .68
	141	1/3		2,590	20	52	79	5.2	.58	20	41	75	4.1	.35	20	29	70	2.9	.13
					30 10	45 76	76 81	3.0 15.3	.20 4.15	30 10	36 63	73 78	2.4 12.7	.12 2.19	30 10	25 45	69 73	1.7 9.0	.04 .84
s	161	1/2		3,330	20	67	79	6.7	.80	20	57	76	5.7	.44	20	40	71	4.0	.16
Outlet Air Temperature Models					30 10	58	76	3.9 19.5	.27	30 10	49 81	74 77	3.3 16.1	.15	30 10	35 57	70 72	2.3	.06
E N	181	3/4		4,420	20	97 86	80 78	8.6	5.62 1.09	20	73	75	7.3	3.03 .61	20	57	72	11.4 5.0	1.15 .22
ratu					30	75	76	5.0	.37	30	64	74	4.3	.21	30	45	69	3.0	.08
mpe	201	3/4		5,430	10 20	119 106	80 78	23.8 10.6	7.14 1.40	10 20	98 88	77 75	19.6 8.8	3.85 .78	10 20	69 62	72 71	13.7 6.2	1.44 .29
ir Te	201	0,1	V	0,100	30	94	76	6.3	.49	30	79	74	5.3	.28	30	55	69	3.7	.10
et A	041	1 1/0	1,125	7,020	15 20	160 153	81	21.4	4.47 2.28	10	136 123	78	27.1 12.3	4.76 .97	10 20	95 86	73 71	19.0 8.6	2.16
Out	241	1-1/2		7,020	30	133	80 78	15.3 9.1	.80	20 30	123	76 75	7.4	.36	30	78	70	0.0 5.2	.45 .16
Low				10.000	15	249	82	33.2	6.66	10	208	78	41.7	7.22	10	149	73	29.7	3.41
	301	2		10,660	20 30	236 215	81 79	23.6 14.4	3.37 1.25	20 30	190 173	77 75	19.0 11.5	1.50 .55	20 30	137 124	72 71	13.7 8.3	.74 .27
					15	327	83	43.6	9.87	10	269	79	53.7	10.43	10	190	73	38.0	4.88
	361	2	↓	13,440	20 30	312	82 80	31.2	5.07	20 30	247	77	24.7	2.20 .82	20 30	177	72	17.7	1.06
			870		30 10	285 425	80 84	19.0 85.0	1.87 3.74	30 10	226 337	76 79	15.1 67.5	1.66	10	161 234	71 73	10.7 46.8	.39 .74
	421	3	1	16,530	20	380	81	38.0	.75	20	300	77	30.0	.33	20	211	72	21.1	.15
					30 10	336 559	79 83	22.4 111.8	.26 5.33	30 10	266 451	75 79	17.7 90.3	.11 2.30	30 10	186 315	70 73	12.4 63.0	.05 1.03
	481	3		22,110	20	502	81	50.2	1.07	20	406	77	40.6	.46	20	284	72	28.4	.21
			V		30	451	79	30.1	.39	30	365	75	24.4	.17	30	253	71	16.9	.07

Unit Heaters

NOTES:

- ① Water temperature at the unit heater.
- ② Standard CFM measured at 70°F with density of .075 lb/cu ft.
- ③ Heat load in thousands of Btu/hr.

NOTE:

Leaving air temperature and MBH from table on previous page must be corrected for water temperatures other than 200°F and entering air temperatures other than 60°F. Liquid flow rates and pressure drops are not corrected.

Table below lists the correction factors. To determine correction factors falling between those shown, use the next lowest water temperature and the next highest entering air temperature shown.

MBH (corrected) = MBH (from page 390) x Correction Factor

LAT (corrected) = EAT + (MBH (corrected) x 926/CFM)

Water $\Delta T = MBH$ (corrected) x 2.00/USGPM

Entering Water		Temperature of Entering Air (°F)													
Temp. (°F)	0	10	20	30	40	50	60	70	80	90	100				
160	1.23	1.14	1.05	0.96	0.88	0.80	0.72	0.63	0.57	0.48	0.41				
170	1.31	1.21	1.12	1.04	0.95	0.87	0.79	0.70	0.63	0.55	0.48				
180	1.38	1.29	1.20	1.11	1.02	0.94	0.86	0.77	0.70	0.62	0.55				
190	1.46	1.36	1.27	1.18	1.10	1.01	0.93	0.85	0.77	0.69	0.62				
200	1.54	1.44	1.35	1.26	1.17	1.09	1.00	0.92	0.84	0.76	0.68				
210	1.61	1.52	1.42	1.33	1.25	1.16	1.07	0.99	0.91	0.83	0.75				
220	1.69	1.59	1.50	1.41	1.32	1.23	1.14	1.06	0.98	0.90	0.82				
230	1.77	1.67	1.57	1.48	1.39	1.30	1.22	1.13	1.05	0.97	0.89				
240	1.84	1.75	1.65	1.55	1.47	1.37	1.29	1.20	1.12	1.04	0.96				
250	1.92	1.82	1.72	1.63	1.54	1.45	1.36	1.27	1.19	1.11	1.03				

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

389

		Co	mmon	Data		Steel 1	Fube / Alu	minum Fir	ı			el Tube / S			;	Stainles	ss Tube / S	Stainless F	Fin
Mo	401	Mo	tor		-		11 FP				Staini	ess Tube (11 FP	Steel Fin				10 FP		
Siz	· · · ⊢	HP	RPM	CFM ②	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressure Drop (ft wg)	Water Temp. Drop	MBH ③	Leaving Air (°F)	USGPM	Pressur Drop (ft wg)
10	20	1/0	1,725	700	40	69	151	3.4	.30	40	51 45	127	2.5 1.5	.15	40	38	111	1.9	.08
10	12	1/3		700	60 80	64 60	145 140	2.1 1.5	.16 .06	60 80	45 40	119 113	1.5	.05 .02	60 80	34 30	106 99	1.2 .7	.03 .01
					40	96	128	4.8	.61	40	79	116	4.0	.25	40	59	101	2.9	.14
12	22	1/3		1,320	60	86	120	2.9	.21	60	71	110	2.4	.10	60	53	97	1.8	.05
_	\rightarrow				80 40	75 137	113 124	1.9 6.8	.09 .28	80 40	62 116	104 114	1.6 5.8	.04	80 40	47 84	93 99	1.2 4.2	.02
14	12	1/3		1,980	60	120	116	4.0	.10	60	101	107	3.4	.05	60	74	95	2.5	.07
					80	103	108	2.6	.04	80	86	100	2.1	.02	80	63	90	4.6	.01
		1/0		0.010	40	185	119	9.2	.41	30	148	107	7.4	.18	40	108	94	5.4	.09
16	52	1/2		2,910	60 80	162 140	112 105	5.4 3.5	.14 .06	60 80	131	102 96	4.4 2.8	.06 .03	60 80	94 82	90 86	3.1 2.1	.03 .01
					40	240	117	12.0	.58	40	203	108	10.2	.26	40	146	95	7.3	.13
18	32	3/4		3,900	60	213	111	7.1	.20	60	179	103	6.0	.09	60	129	91	4.3	.04
					80 40	185 296	104	4.6 14.8	.09	80 40	158 251	97 111	3.9 12.5	.04 .34	80 40	113	87	2.8 8.9	.02
20	12	3/4		4,560	40 60	296	120 114	8.8	.74 .26	40 60	221	106	7.5	.34 .12	40 60	178	96 93	5.4	.16
	-	0/ 1	V	1,000	80	233	107	5.8	.11	80	197	100	4.9	.05	80	141	89	3.5	.03
			1,125		40	444	129	22.2	1.00	40	373	118	18.6	.60	40	264	101	13.2	.28
24	12	1-1/2		6,000	60 80	405 363	123 116	13.5 9.1	.37 .17	60 80	336 301	112 107	11.2 7.5	.22 .10	60 80	238 214	97 93	7.9 5.4	.10
	+				40	721	131	36.0	1.57	40	596	119	29.8	.10	40	421	102	21.1	.05
30)2	2		9,400	60	660	125	22.0	.59	60	543	114	18.1	.36	60	383	98	12.8	.17
					80	599	119	15.0	.27	80	493	109	12.3	.17	80	348	94	8.7	.08
36		2		12,160	40 60	950 873	132 127	47.5 29.1	2.24 .84	40 60	781 714	120 114	39.1 23.8	1.46 .54	40 60	557 511	102 99	27.8 17.0	.69 .26
30	2	2	•	12,100	80	799	127	29.1	.04 .40	80	654	114	23.0 16.4	.25	80	465	99	11.6	.20
			870		40	1,167	131	58.4	.32	40	956	118	47.8	.22	40	704	103	35.2	.11
42	22	3		15,160	60	1,048	124	34.9	.12	60	856	112	28.5	.08	60	632	99	21.1	.04
_	\rightarrow				80 40	933 1,543	117 131	23.3 77.2	.05	80 40	763	107 120	19.1 64.7	.03 .31	80 40	560 939	94 103	14.0 47.0	.02
48	32	3		20,040	60	1,392	124	46.4	.43	60	1,158	114	38.6	.11	60	848	99	28.3	.15
				- ,	80	1,255	118	31.4	.07	80	1,045	108	26.1	.05	80	753	95	18.8	.02
			1,725		40	43	109	2.1	.56	40	33	98	1.7	.32	40	24	88	1.2	.13
10	ו וו	1/3		810	60 80	38 34	104 98	1.3 .8	.20 .09	60 80	30 26	94 90	1.0 .7	.11 .05	60 80	21 19	85 82	.7 .5	.05
	\rightarrow				40	63	103	3.2	.03	40	49	94	2.5	.03	40	35	84	1.8	.02
12	21	1/3		1,350	60	57	99	1.9	.33	60	45	91	1.5	.20	60	32	82	1.1	.08
					80	50	95	1.3	.15	80	39	87	1.0	.08	80	28	79	.7	.03
14	11	1/3		2,590	40 60	91 80	93 89	4.6 2.7	.45 .15	40 60	71 63	86 83	3.6 2.1	.26 .09	40 60	50 44	78 76	2.5 1.5	.10
1 13		1/5		2,000	80	69	85	1.7	.06	80	55	80	1.4	.03	80	38	74	1.0	.03
					40	117	93	5.8	.61	30	98	87	4.9	.33	40	69	79	3.5	.13
2 16	61	1/2		3,330	60	103	89	3.4	.21	60	87	84	2.9	.12	60	61	77	2.0	.04
	\rightarrow				80 40	89 150	85 91	2.2 7.5	.09 .83	80 40	77	81 86	1.9 6.3	.05 .46	80 40	54 87	75 78	1.4 4.4	.02
2 18	31	3/4		4,420	60	133	88	4.4	.03	60	1120	83	3.7	.16	60	78	76	2.6	.06
		-, -		.,	80	117	84	2.9	.18	80	99	81	2.5	.07	80	69	74	1.7	.03
				5 400	40	185	92	9.2	1.07	40	153	86	7.6	.58	40	107	78	5.4	.22
20	ן וו	3/4	•	5,430	60 80	164 144	88 85	5.5 3.6	.38 .16	60 80	138 122	84 81	4.6 3.1	.21 .09	60 80	96 84	76 74	3.2 2.1	.08 .03
			1,125		40	263	95	13.2	1.68	40	214	88	10.7	.74	40	149	80	7.4	.33
24	11 [.]	1-1/2	1	7,020	60	239	92	8.0	.62	60	192	85	6.4	.26	60	135	78	4.5	.12
	\rightarrow				80	212	88	5.3	.27	80	173	83	4.3	.12	80	121	76	3.0	.05
30	11	2		10,660	40 60	408 372	96 92	20.4 12.4	2.53 .93	40 60	329 298	89 86	16.7 9.9	1.13 .41	40 60	234 213	80 79	11.7 7.1	.54 .20
50	~	-		10,000	80	334	89	8.4	.42	80	269	83	6.7	.19	80	192	77	4.8	.20
	\top				40	537	97	26.9	3.75	40	425	89	21.3	1.64	40	302	81	15.1	.77
36	61	2	. ↓	13,440	60	494	94	16.5	1.41	60	389	87	13.0	.61	60	276	79	9.2	.29
-	+		870		80 40	447 661	91 97	11.2 33.0	.65 .57	80 40	356 528	85 90	8.9 26.4	.29 .25	80 40	250 362	77 80	6.2 18.1	.13
42	21	3		16,530	60	586	97	19.5	.20	60	466	86	15.5	.25	60	323	78	10.1	.04
					80	520	89	13.0	.09	80	411	83	10.3	.04	80	286	76	7.1	.02
	, [<u> </u>		211.00	30	876	97	43.8	.82	40	700	89	35.0	.35	40	492	81	24.6	.16
48	51	3	•	22,110	60 80	783 693	93 89	26.1 17.3	.29 .13	60 80	630 564	86 84	21.0 14.1	.12 .06	60 80	442 392	79 76	14.7 9.8	.06 .02

Unit Heaters

NOTES:

Water temperature at the unit heater.
Standard CFM measured at 70°F with density of .075 lb/cu ft.
Heat load in thousands of Btu/hr.

NOTE:

Leaving air temperature and MBH from table on previous page must be corrected for water temperatures other than 300°F and entering air temperatures other than 60°F. Liquid flow rates and pressure drops are not corrected.

Table below lists the correction factors. To determine correction factors falling between those shown, use the next lowest water temperature and the next highest entering air temperature shown.

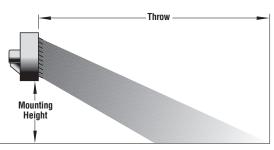
MBH (corrected) = MBH (from page 390) x Correction Factor

LAT (corrected) = EAT + (MBH [corrected] x 926/CFM)

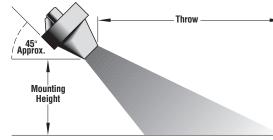
Water $\Delta T = MBH$ (corrected) x 2.08/USGPM

Correction Factors	Based on 30)0°F ⁽¹⁾ Entei	ring Water, 6	0°F Entering	Air						
Entering Water					Temperat	ure of Enteri	ng Air (°F)				
Temp. (°F)	0	10	20	30	40	50	60	70	80	90	100
260	1.15	1.10	1.04	0.99	0.94	0.88	0.83	0.78	0.73	0.69	0.64
270	1.19	1.14	1.08	1.03	0.98	0.93	0.88	0.82	0.78	0.73	0.68
280	1.23	1.18	1.13	1.08	1.02	0.97	0.92	0.87	0.82	0.77	0.72
290	1.27	1.22	1.17	1.12	1.07	1.01	0.96	0.91	0.86	0.81	0.76
300	1.31	1.26	1.21	1.16	1.11	1.05	1.00	0.95	0.90	0.85	0.80
310	1.35	1.30	1.25	1.21	1.15	1.10	1.04	0.99	0.94	0.89	0.84
320	1.41	1.36	1.30	1.26	1.19	1.14	1.09	1.03	0.98	0.93	0.88
330	1.45	1.40	1.34	1.30	1.23	1.18	1.13	1.07	1.02	0.97	0.92
340	1.49	1.44	1.39	1.34	1.27	1.22	1.17	1.11	1.06	1.01	0.95
350	1.54	1.48	1.43	1.38	1.33	1.26	1.21	1.15	1.10	1.05	1.00
360	1.58	1.52	1.47	1.42	1.36	1.30	1.25	1.20	1.14	1.09	1.04
370	1.62	1.57	1.51	1.46	1.40	1.35	1.29	1.24	1.18	1.13	1.08
380	1.66	1.61	1.55	1.50	1.44	1.39	1.33	1.28	1.22	1.17	1.12
390	1.71	1.65	1.60	1.54	1.49	1.43	1.37	1.32	1.27	1.21	1.16
400	1.74	1.69	1.63	1.57	1.53	1.47	1.42	1.36	1.31	1.25	1.20

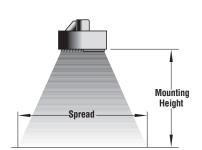
Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com for up-to-date information.

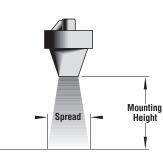

391

Armstrong[®] Mounting Heights, Throws and Spreads


The mounting heights, throws and spreads listed below are based on an air temperature rise (Δ T) of 40°F. To arrive at these values for temperature rises other than 40°F, first determine the actual temperature rise from the appropriate performance data page. Then multiply the values from table below by the correction factors shown.

NOTES:


- 1. Minimum mounting height is 7 feet.
- 2. Mounting height is measured from bottom of unit to floor.
- 3. Values in the table were determined with louvers at 45°.
- If four-way discharge louvers are used for horizontal applications, multiply throws by 0.8.
- 5. Values given are based upon average conditions and could be severely affected by such factors as obstructions, cross drafts, etc.


Horizontal Discharge—Standard Louvers

Horizontal Discharge—High-Velocity Nozzle

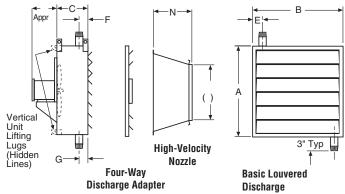
Vertical Discharge—Four-Way Louvers

Vertical Discharge—High-Velocity Nozzle

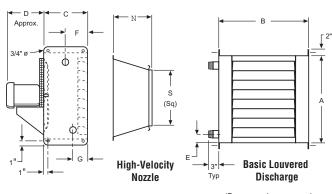
Actual ΔT	Correction
10	1.18
20	1.12
30	1.06
40	1.00
50	0.94
60	0.88
70	0.82
80	0.76
90	0.70
100	0.64
110	0.58
120	0.51
130	0.45
140	0.39
150	0.33

Discharge Temperature

Unit Heat	Unit Heater Mounting Heights, Throws and Spreads													
	Ho	rizontal Louvered		V	ertical Louvered		Horizo	ontal High Veloc	ity	Vert	ical High Veloci	ty		
Model Size	Outlet Velocity FPM	Max. Mounting Height (ft)	Throw (ft)	Outlet Velocity FPM	Max. Mounting Height (ft)	Spread (ft)	Outlet Velocity FPM	Max. Mounting Height (ft)	Throw (ft)	Outlet Velocity FPM	Max. Mounting Height (ft)	Spread (ft)		
101	600	10	30	660	10	25	2,310	12	40	2,310	17	15		
121	750	12	44	820	13	38	2,050	14	58	2,050	22	20		
141	1,090	14	53	1,200	16	48	2,620	17	72	2,620	27	25		
161	1,110	15	66	1,220	17	52	2,290	18	88	2,290	29	27		
181	1,200	16	72	1,320	18	55	2,270	19	94	2,270	31	29		
201	1,220	17	76	1,340	18	56	2,380	20	101	2,380	31	29		
241	1,360	18	82	1,500	19	59	2,340	22	109	2,340	32	30		
301	1,340	20	84	1,500	20	62	2,270	24	112	2,270	34	32		
361	1,220	21	88	1,340	21	65	2,210	25	122	2,210	36	34		
421	1,110	21	118	1,230	21	66	2,180	25	158	2,180	36	34		
481	1,140	22	118	1,270	22	70	2,210	26	160	2,210	37	35		
102	550	9	22	600	9	24	2,000	11	30	2,000	15	13		
122	730	12	37	800	13	38	2,000	14	49	2,000	22	20		
142	840	13	45	920	15	46	2,000	16	62	2,000	26	24		
162	970	15	56	1,060	17	51	2,000	18	75	2,000	29	27		
182	1,050	16	66	1,160	18	55	2,000	19	86	2,000	31	29		
202	1,030	16	69	1,130	18	56	2,000	19	92	2,000	31	29		
242	1,170	17	73	1,280	19	59	2,000	20	97	2,000	32	30		
302	1,180	19	74	1,320	20	62	2,000	23	98	2,000	34	32		
362	1,100	20	78	1,210	20	62	2,000	24	110	2,000	34	32		
422	1,020	21	110	1,130	21	66	2,000	25	145	2,000	36	34		
482	1,040	22	110	1,150	22	70	2,000	26	147	2,000	37	35		


Sound Data

Since unit heaters use fans and motors to move air, sound is a natural result. The sound rating of a particular unit may limit its use in a given application. The following sound rating table is presented to allow you to select a unit based upon an acceptable sound level.


Sound Data	
Unit Heater Size	dBA Sound * Pressure Level at 3 Feet from Unit
101	63
102	63
121	63
122	63
141	66
142	65
161	74
162	73
181	77
182	76
201	81
202	81
241	82
242	82
301	84
302	83
361	85
362	85
421	84
422	83
481	85
482	85

* Per fan.

10"–20" Units

24"-48" Units

NOTE: Connections are MPT

(Four-way louver section *replaces* basic louver section)

Model Size	ons and W	5			Dimen	sions (in)					V	izontal or ers ype (lb)	Additional Weight for High-Velocity Discharge Nozzle	
3126	A	В	C	D	E	F	G	Conn. MPT	N	S	ST/AL	ST/ST	SS/SS	(lb)
101 102	15	17-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	10	7	95 135	105 155	95 145	11
121 122	17-1/4	19-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	10-3/4	9-3/4	105 150	120 180	110 165	14
141 142	19-1/2	21-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	11-1/2	11-3/4	120 175	140 210	125 190	16
161 162	22	23-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	12-1/4	14-1/4	135 195	165 240	145 220	19
181 182	24-1/4	25-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	13	16-3/4	150 220	185 280	160 250	22
201 202	26-1/2	27-3/4	12	9	1-3/8	4-1/2	4-1/4	1-1/2	13-3/4	18	170 245	210 315	180 285	24
241 242	32	34-1/4	18	12	2-7/16	6-3/4	4-1/4	2	14-1/2	20-3/4	290 360	350 470	320 420	17
301 302	39-1/4	40-1/4	18	12-1/2	1-13/16	6-3/4	4-1/4	2	18-13/16	26	360 460	460 650	410 550	31
361 362	45-1/4	46-1/4	18	12-1/2	2-5/8	6-1/2	4-1/2	2-1/2	22-7/8	29-1/2	440 550	560 800	500 680	47
421 422	52-1/4	52-1/4	22	15	2-5/8	6-1/4	4-3/4	3	29-3/8	33	680 830	850 1,150	770 1,010	35
481 482	59-1/4	58-1/4	22	15	2-3/8	6-1/4	4-3/4	3	31-1/4	38	800 990	1,030 1,430	920 1,240	47

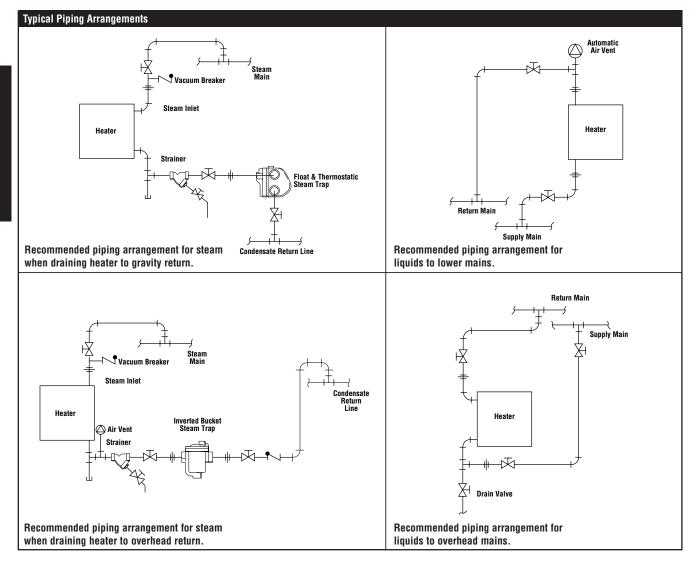
* Dual units have two fans and two motors and, therefore, have twice the width and weight.

Armstrong[®] Installation Guidelines

Below are some abbreviated installation guidelines. Consult Armstrong for more detailed installation, operation and maintenance instructions.

General Piping Guidelines

- 1. Provide adequate support from the building structure to eliminate piping stresses.
- 2. Allow movement of the piping to provide for expansion and contraction. Use swing joints where possible.
- 3. Adequately support all piping. Do not use unit heater for this purpose.


Steam Piping

- 1. Slope steam piping under 10' long toward the steam main. If steam pipe is longer than 10', slope toward the unit and install a drip trap before the unit.
- 2. All steam and condensate lines must be of the proper size to carry the calculated loads.

- 3. Only continuously draining traps such as inverted bucket or float and thermostatic types should be used. If an inverted bucket trap is used, an air vent should be installed downstream of the unit and before the trap.
- 4. Maintain the unit heater outlet size to the trap takeoff.
- 5. If condensate is to be lifted or if the return system is pressurized, use a check valve after the steam trap and provide a gate valve on the strainer to drain the heater in the off season.

Liquid Piping

- 1. Supply return mains must be sloped for adequate venting.
- 2. Provide air vents at all high points.
- Circulating pumps must be of adequate size to provide the required liquid flow and to overcome the system pressure drops.

Sample Specifications

Unit heaters supplied shall be manufactured with the methods and materials specified as follows:

General

Enclosures and Louvers—Shall be of minimum 14 ga galvanized steel and finished in gray enamel. (Epoxy coatings and other protective finishes are available.) Fans shall have aluminum alloy blades with steel hubs. (Epoxy coatings and other protective finishes are available.)

Motors—Shall be heavy-duty industrial type TEFC, ball bearing, standard NEMA frame motors. Electrical supply shall be _____ phase _____ volts 60 Hz. (Explosion-proof and other motor types available.)

Fan Guards—Shall be provided with each unit and be OSHA approved.

Core Type Specific

Steel tube/steel fin:

Tubes—Shall be 1" OD 12 ga steel tube. Minimum wall thickness shall be .109".

Fins—Shall be helically wound L-footed and of minimum .024" thick steel.

Headers-Shall be of carbon steel not less than .145" thick.

Connections-Shall be of Schedule 80 carbon steel pipe.

Assembly—Shall be welded to form a monometallic, internally wetted surface. Standard testing pressure at 525 psig. Pressure parts all welded.

Steel tube/aluminum fin:

Tubes—Shall be of 1" OD 12 ga steel tube. Minimum wall thickness shall be .109".

Fins—Shall be helically wound embedded type and of minimum .020" thick aluminum.

Headers-Shall be of carbon steel not less than .145" thick.

Connections—Shall be of Schedule 80 carbon steel pipe.

Assembly—Shall be welded to form a monometallic, internally wetted surface. Standard testing pressure at 525 psig.

Stainless steel tube/stainless steel fin:

Tubes—Shall be 304 L (or 316 L) 1" OD 14 ga stainless steel tube. Minimum wall thickness shall be .083".

Fins—Shall be helically wound L-footed and of minimum .020" thick 304 (or 316) stainless steel.

Headers—Shall be of the same stainless steel as the tubes not less than .109" thick.

Connections—Shall be of Schedule 40 stainless steel pipe.

Assembly—Shall be welded to form a monometallic, internally wetted surface. Standard testing pressure at 525 psig.

Stainless steel tube/steel fin:

Tubes—Shall be 304 L (or 316 L) 1" OD 14 ga stainless steel tube. Minimum wall thickness shall be .083".

Fins—Shall be helically wound L-footed and of minimum .024" thick steel.

Headers—Shall be of the same stainless steel as the tubes not less than .109" thick.

Connections—Shall be of Schedule 40 stainless steel pipe.

Assembly—Shall be welded to form a monometallic, internally wetted surface. Standard testing pressure at 525 psig.